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Neuropeptide S Activates Paraventricular Oxytocin Neurons
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Neuropeptides, such as neuropeptide S (NPS) and oxytocin (OXT), represent potential options for the treatment of anxiety disorders due
to their potent anxiolytic profile. In this study, we aimed to reveal the mechanisms underlying the behavioral action of NPS, and present
a chain of evidence that the effects of NPS within the hypothalamic paraventricular nucleus (PVN) are mediated via actions on local OXT
neurons in male Wistar rats. First, retrograde studies identified NPS fibers originating in the brainstem locus coeruleus, and projecting
to the PVN. FACS identified prominent NPS receptor expression in PVN-OXT neurons. Using genetically encoded calcium indicators, we
further demonstrated that NPS reliably induces a transient increase in intracellular Ca 2� concentration in a subpopulation of OXT
neurons, an effect mediated by NPS receptor. In addition, intracerebroventricular (i.c.v.) NPS evoked a significant somatodendritic
release of OXT within the PVN as assessed by microdialysis in combination with a highly sensitive radioimmunoassay. Finally, we could
show that the anxiolytic effect of NPS seen after i.c.v. or intra-PVN infusion requires responsive OXT neurons of the PVN and locally
released OXT. Thus, pharmacological blockade of OXT receptors as well as chemogenetic silencing of OXT neurons within the PVN
prevented the effect of synthetic NPS. In conclusion, our results indicate a significant role of the OXT system in mediating the effects of
NPS on anxiety, and fill an important gap in our understanding of brain neuropeptide interactions in the context of regulation of
emotional behavior within the hypothalamus.
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Introduction
Anxiety disorders have a lifetime prevalence of �28% (Gross and
Hen, 2004; Kessler et al., 2005); however, specific and efficient

therapeutic strategies are still required. The nonapeptide oxy-
tocin (OXT) and the recently discovered neuropeptide S (NPS),
a 20-amino acid neuropeptide, represent powerful therapeutic
candidates due to their potent anxiolytic activity (Xu et al., 2004;
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Significance Statement

Given the rising scientific interest in neuropeptide research in the context of emotional and stress-related behaviors, our findings
demonstrate a novel intrahypothalamic mechanism involving paraventricular oxytocin neurons that express the neuropeptide S
receptor. These neurons respond with transient Ca 2� increase and somatodendritic oxytocin release following neuropeptide S
stimulation. Thereby, oxytocin neurons seem essential for neuropeptide S-induced anxiolysis, as this effect was blocked by
pharmacological and chemogenetic inhibition of the oxytocin system.
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Pape et al., 2010; Neumann and Landgraf, 2012; Slattery et al.,
2015; Neumann and Slattery, 2016). However, the OXT and NPS
systems represent, so far, two separate neuropeptide systems, and
studies for possible interactions at neuronal level are lacking.

In addition to the hypothalamic supraoptic (SON) and acces-
sory nuclei, the main site of OXT synthesis is the paraventricular
nucleus (PVN) (Swanson and Sawchenko, 1983), where OXT is
locally released in response to various stressful stimuli (Neumann,
2007), and where it exerts anxiolytic effects as shown in male and
female rats (Blume et al., 2008; Jurek et al., 2012; van den Burg et
al., 2015). The PVN is a major integrative center of the brain
coordinating behavioral and physiological responses, for exam-
ple, to stress and fearful stimuli (Knobloch et al., 2012; Neumann
and Landgraf, 2012; Anthony et al., 2014). Accordingly, the ro-
dent PVN receives afferents from various limbic regions and
from noradrenergic neurons located in the locus coeruleus (LC)
(Swanson and Sawchenko, 1980; Jones and Yang, 1985; Loughlin
et al., 1986) that also harbors a cluster of predominantly gluta-
matergic neurons synthesizing NPS (Xu et al., 2007). Prominent
NPS-immunopositive projections to the PVN have so far been
described in C57BL/6 mice (Clark et al., 2011).

Whereas NPS-synthesizing neurons in rats are exclusively
found in distinct brainstem regions, such as the LC, Barrington’s
nucleus, lateral parabrachial nucleus, and the principal sensory
trigeminal nucleus, the NPS receptor (NPSR) is widely distrib-
uted in the rat brain (Xu et al., 2007). There is evidence for NPSR
expression in areas involved in olfaction, modulation of sleep–
wake cycle and food intake, and limbic brain regions relevant for
the processing of fear, anxiety, and stress responses, such as the
amygdala and the hypothalamus, specifically in the PVN (Xu et
al., 2007; Leonard and Ring, 2011).

In addition to robust anxiolytic actions, NPS and OXT share
various other behavioral and physiological effects, such as the
reversal of social fear (Zoicas et al., 2014; Zoicas et al., 2016), the
attenuation of aggressive-like behavior (Beiderbeck et al., 2014;
de Jong et al., 2014; Ruzza et al., 2015), as well as anorexic (Olson
et al., 1991; Beck et al., 2005; Smith et al., 2006) and antinocice-
ptive effects (Li et al., 2009; Eliava et al., 2016). Moreover, both
NPS and OXT neurons are responsive to acute stress (Neumann,
2007; Ebner et al., 2011; Jüngling et al., 2012; Torner et al., 2017)
and have the capacity to regulate the physiological activity of the
hypothalamo-pituitary-adrenal axis (Neumann et al., 2006;
Smith et al., 2006; Jurek et al., 2015; Torner et al., 2017).

These functional similarities, together with the neuroanat-
omical overlapping of the NPS and OXT systems (Swanson and
Sawchenko, 1983; Xu et al., 2007; Yoshida et al., 2009), led us to
hypothesize that NPS effects are mediated via OXT neurons
within the PVN of male Wistar rats. Our present results reveal
that NPS specifically activates NPSR-expressing OXT neurons
within the PVN indicated by increased Ca 2� mobilization and
local somatodendritic OXT release. Moreover, we show that
pharmacological and chemogenetic inhibition of OXT neurons
blocks NPS-induced anxiolysis. These findings provide the first
evidence for an intrahypothalamic mechanism involving NPSR-
expressing OXT neurons in the potent anxiolytic profile of NPS.

Materials and Methods
Animals. Male Wistar rats (230 –250 g, Charles River Laboratories) were
housed under standard laboratory conditions (12:12 h light/dark cycle,
lights on at 0700, 21°C–23°C, 55% humidity, food/water ad libitum).
Rats were allowed at least 1 week of habituation before they were used for
surgical procedures. All experiments were performed between 0800 and
1300 in accordance with the Guide for the care and use of laboratory
animals by the National Institutes of Health, and were approved by the
governments of the Oberpfalz and Baden-Württemberg.

Surgical procedures. For stereotaxic gene delivery, or implantation of
guide cannulas and microdialysis probes, rats were injected subcutane-
ously with the analgesic drug Buprenorphine (Bayer, 0.05 mg/kg) and
the antibiotic Baytril (Baxter, 10 mg/kg) 30 min before the start of the
surgery. All stereotaxic procedures were performed under isoflurane an-
esthesia and semisterile conditions as described in detail previously (Slat-
tery et al., 2015; van den Burg et al., 2015; Eliava et al., 2016). All
coordinates used are based on the rat brain atlas (Paxinos and Watson,
1998).

For viral microinfusion into the left and right PVN (anteroposterior,
�1.8 mm; mediolateral, �0.3 mm; dorsoventral, �8.0 mm) and SON
(anteroposterior, �1.4 mm; mediolateral, �1.7 mm; dorsoventral, �9.0
mm), respectively, we used a 5 �l calibrated micropipette (VWR, inner
diameter, 0.3 mm), which was pulled to create a long narrow shank. The
micropipette shaft was marked with a 1 mm scale that corresponds to a
volume of �70 nl. In total, 280 nl of cell-type specific recombinant
adeno-associated viral vectors (rAAVs) were infused slowly into each
PVN by pressure infusion. After the infusion, the micropipette was kept
in place for 3 min to ensure adequate rAAV diffusion. The drill hole in the
skull was closed using bone wax (Ethicon), and the wound was sutured
using sterile nylon material.

For intracerebroventricular (i.c.v.) infusions, a 12-mm-long 21-G
guide cannula was stereotaxically placed 2 mm above the lateral ventricle
(anteroposterior, �1.0 mm; mediolateral, �1.6 mm; dorsoventral, �2.0
mm). For bilateral intra-PVN infusions, 12-mm-long 23-G guide can-
nulas were implanted 2 mm above the left and right PVN (anteroposte-
rior, �1.4 mm; mediolateral, 1.8 mm; �2.1 mm; dorsoventral, �6.3
mm; angle: 10°). To monitor OXT locally released within the PVN, a
U-shaped microdialysis probe was implanted into the right PVN (an-
teroposterior, �1.4 mm; mediolateral, 1.8 mm; dorsoventral, �8.3 mm;
angle: 10°). Both guide cannulas and microdialysis probes targeting the
PVN were implanted using an angle of 10° to avoid sagittal sinus damage.
All implants were fixed to two stainless-steel screws using dental cement.
Rats were housed singly after surgery, allowed to recover for 2 d (micro-
dialysis) or 5 d (central infusions), and handled daily to minimize non-
specific stress responses at the day of experiment. Guide cannulas were
closed using dummy cannulas, which were cleaned daily during the han-
dling procedure with 70% ethanol and sterile water.

Retrograde tracing of NPS-immunoreactive neurons. Cholera toxin sub-
unit B coupled to AlexaFluor-488 (CTB-488, ThermoScientific, 0.5 �l,
5 �g/�l in PBS, pH 7.4) was infused bilaterally into the PVN (anteropos-
terior, �1.8 mm; mediolateral, �0.3 mm; dorsoventral, �8.0 mm) using
a calibrated micropipette under isoflurane anesthesia. The infusion sys-
tem was kept in place for 3 min to ensure adequate tracer diffusion.
Animals were housed singly for 5 d until transcardial perfusion. NPS
(1:500, Abcam, ab18252); OXT (1:500, p38 mouse monoclonal) (Ben-
Barak et al., 1985) and CTB-488 were visualized in 40 �m coronal brain
slices containing the PVN and LC, respectively, using Leica DM5000B.

Preparation of samples and FACS analysis. Rats were injected with cell-
type specific AAV1/2 OXTpr-Venus into the SON and PVN to express
Venus in OXT neurons (Knobloch et al., 2012). Three weeks later, rats
were killed, and their brains were removed and sectioned into large pieces
using rat brain matrix (1-mm thick sections). SON and PVN were bilat-
erally extracted by micro-punch technique. FACS method of neuronal
cells was modified from established protocols (Lobo et al., 2006; Guez-
Barber et al., 2012). The tissue was placed in 1 ml of dissection buffer
containing the following (in mM): 150 sucrose, 125 NaCl, 3.5 KCl, 1.2
NaH2PO4, 2.4 CaCl2, 1.3 MgCl2, 6.65 glucose, and 2 HEPES, pH 6.9
(osmolarity 326 mM, all from Sigma) (Li et al., 2015) and minced with
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razor blades on an ice-cold glass plate. Later, dissection buffer was re-
placed with 1 ml of Accutase (A6964, Sigma-Aldrich), and tubes were
rotated for 30 min at 4°C. Then, tissue pieces were rinsed twice in ice-cold
Neurobasal-A complete medium: 50% Neurobasal-A, 50% Leibovitz
L-15 medium (31415, Invitrogen), 2% B27 supplement (17504044, In-
vitrogen), DNase I 0.001%, and 0.5% penicillin-streptomycin (15140122,
Invitrogen). To dissociate the cells, tissue pieces were triturated in 1 ml
Neurobasal-A complete medium with a Pasteur pipette. Supernatant
containing cloudy dissociated cells were transferred to a new 15 ml Fal-
con tube on ice. Cells were filtered with 70 �m cell strainer and centri-
fuged for 3 min at 430 � g through a three-step density gradient of
Percoll (P1644, Sigma). Cells at the bottom layer were collected for later
use. For FACS of OXT-Venus � cells, propidium iodide (20 �g/ml) was
used to label dead cells just before sorting. Subsequently, FACS-based
purifications of Venus � and Venus � viable cells were sorted into RNase-
free tubes with RNA extraction lysis buffer by BD FACSAria II at Flow
Cytometry Core Facility at DKFZ. Negative controls were done at the
same time.

qRT-PCR. Total RNAs were extracted and purified from FACS-sorted
cells with the RNeasy Mini kit or RNeasy FFPE Kit (QIAGEN). RNA was
transcribed into cDNA using random primers (dN6, Roche) and
M-MLV reverse transcriptase (Promega). cDNA were quantified by us-
ing SYBR gene expression assays (QIAGEN) or TaqMan Probe with Ab-
solute Blue qPCR Rox mix (ThermoFisher), on the CFX96 Real-time
System (Bio-Rad). Standard curves were generated, and each experiment
was performed in duplicate. Relative transcript concentrations were
calculated using the 2 (���Ct) method (Livak and Schmittgen, 2001) in
relation to �-actin as reference gene. Primers and probes used for qRT-
PCR are listed in Table 1.

Ca2� imaging in PVN-OXT neurons. AAV1/2 OXTpr-GCaMP6s was
infused bilaterally into the PVN. Three weeks later, animals were anes-
thetized using a ketamine/xylazine mixture (Imalgene 90 mg/kg, Rom-
pun, 10 mg/kg) administered intraperitoneally.

Transcardial perfusion was then performed using NMDG-based ACSF
(composition in mM as follows): 93 NMDG, 2.5 KCl, 1.25 NaH2PO4, 30
NaHCO3, 10 MgSO4, 0.5 CaCl2, 20 HEPES, 25 D-glucose, 5 L ascorbic
acid, 2 thiourea, 3 sodium pyruvate, 10 N-acetyl-L-cysteine, and 2 kynurenic
acid, pH 7.4 (300 –310 mOsm/l, continuously bubbled in 95% O2-5%
CO2 gas). Next, 300-�m thick coronal slices containing the PVN were
collected using a Leica VT1000s vibratome. Next, brain slices were placed
in a room-temperature holding chamber with normal ACSF, for a min-
imum of 1 h before the conduction of any experiments. In Ca 2� imaging
experiments, slices were transferred to an immersion recording chamber
and superfused at a rate of 2 ml/min with normal ACSF (composition in
mM as follows): 124 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2
MgSO4, 2 CaCl2, and 15 D-glucose (300 –310 mOsm/l, adjusted for pH
values of 7.4 with HCl and continuously bubbled in 95% O2-5% CO2

gas) unless indicated otherwise.
Ex vivo Ca2� imaging recordings. Spinning disk confocal microscope

used to perform OXT neuron Ca 2� imaging was composed of a Zeiss
Axio examiner microscope with a 20� water-immersion objective
(numerical aperture of 1.0), mounted with a X-Light Confocal unit,
CRESTOPT spinning disk. Images were acquired at 5 Hz with an opti-
MOS sCMOS camera (Qimaging). Cells within a confocal plane were
illuminated for 100 –150 ms for each wavelength (GCaMP6s: 475 nm)
using a Spectra 7 LUMENCOR. The different hardware elements were
synchronized through the MetaFluor software (Molecular Devices),
which was also used for online and offline quantitative fluorescence anal-
ysis. OXT neuron Ca 2� levels were measured in hand-drawn regions of
interest (ROIs) comprising the cell body. [Ca 2�]i variations were esti-

mated as changes in fluorescence signals over the baseline (�F/F) after
drug applications. In all recordings, background fluorescence measured
in an ROI drawn in the darkest area of the field of view was extracted to
every ROIs for each wavelength and for each image. Absolute [Ca 2�]i

variations were estimated as changes in fluorescence signals over the
baseline (�F/F). Baseline was established for each ROI as the average
fluorescence over all pictures. Bleaching was corrected using a linear
regression on the overall �F/F trace for each OXT neurons, which values
were then subtracted to the �F/F. Upon extraction of data, calculations,
and corrections of �F/F for each neuron, the area under the curve (AUC)
was calculated over a time period of 5 min before and after drug appli-
cation. NPS (2 �M, Bachem) and SHA-68 (NPSR antagonist, 100 �M,
Tocris Bioscience) were bath-applied during 20 s and �15 min, respec-
tively. An OXT neuron was considered as being responsive to the drug,
when the peak �F/F and the relative ratio of AUCs after drug application
over baseline were both 4SD and 20% greater than in baseline conditions,
respectively. The relative AUCs ratios values were used for quantitative
analysis and called “relative AUC increase.” Maximal peak reached after
drug application was also measured and used in quantitative analysis.
Data were averaged across OXT neurons per slices, which were used as
the statistical unit over a minimum of 3 animals per condition. ImageJ
software was also used on GCaMP6s pictures to produce illustrative pic-
tures, such as the one in Figure 3. All Ca 2� imaging experiments were
conducted at controlled room temperature of 22°C.

Monitoring of intra-PVN release of OXT. A U-shaped microdialysis
probe (Neumann et al., 1993; Torner et al., 2017) was implanted into the
right PVN, and a guide cannula (21G, 12 mm) was stereotaxically placed
2 mm above the lateral ventricle. Two days later, the microdialysis probe
was connected to a syringe mounted onto a microinfusion pump via
polyethylene tubing and perfused with sterile Ringer’s solution (3.3 �l/
min) starting at 0800 for 2 h before the start of the experiment to establish
an equilibrium between inside and outside of the microdialysis mem-
brane. Then, five consecutive 30-min dialysates were collected: Samples 1
and 2 were taken under basal conditions, and Samples 3, 4, and 5 after
i.c.v. infusion of either NPS (1 or 5 nmol/5 �l) or sterile Ringer’s solution
(vehicle, Veh, 5 �l). The outflow of the microdialysis probe was equipped
with a tube holder that allowed direct sample collection into a 1.5-ml
Eppendorf tube containing 10 �l of 0.1 M HCl. Following this, samples
were immediately frozen on dry ice and subsequently stored at �20°C
until quantification of OXT. OXT content was measured in evaporated
dialysates by a highly sensitive and selective radioimmunoassay (de Jong
et al., 2015).

Pharmacological inhibition of OXT receptor (OXTR). Guide cannulas
were implanted above the lateral ventricle for i.c.v. infusion or above the
left and right PVN for intra-PVN infusions. For evaluation of the
local effect of the OXT receptor antagonist (OXTR-A; des-Gly-
NH2,d(CH2)5[Tyr(Me) 2,Thr 4]OVT) (Manning et al., 2012) on NPS-
induced anxiolysis, four groups of conscious rats were studied, which
received Veh/Veh, Veh/NPS, OXTR-A/Veh, or OXTR-A/NPS with a
5-min interval. The infused dose of the OXTR-A (0.75 �g/5 �l i.c.v., 0.15
�g/0.5 �l intra-PVN) was selected on the basis of earlier experiments
(Lukas et al., 2013). NPS was infused either i.c.v. (1 nmol/5 �l) or intra-
PVN (0.2 nmol/0.5�l); controls were infused with an equal volume of
sterile Ringer’s solution. Anxiety was tested using the light/dark box
(LDB) 15 min after last intracerebral infusion. Two days later, the same
rats were tested in the open field (OF) 15 min after they received a
randomized treatment.

Chemogenetic silencing of PVN-OXT neurons. AAV1/2 OXTpr-hM4Di:
mCherry was bilaterally microinfused into the left and right PVN, an
i.c.v. guide cannula was implanted, and then the rats were single-housed
to recover for 48 h. On day 16 after AAV infusion, animals were housed
singly in observation cages. On day 21 after AAV infusion and induction
of expression of DREADD in OXT neurons, hM4Di, the Gi-coupled
designer receptor, was activated by intraperitoneal injection of clozapine
N-oxide (CNO, 2 mg/kg); controls received 1 ml/kg of sterile PBS. NPS (1
nmol) or Veh (5 �l) was infused i.c.v. 40 min later, i.e., 15 min before
testing on the elevated plus maze (EPM). Expression of OXTpr-hM4Di:
mCherry was verified in perfused, 40-�m thick coronal brain slices by
immunofluorescent staining of mCherry (1:1.000, Abcam, ab167453)

Table 1. List of primers used for mRNA expression studies in rats

Primer/probe 5	-3	

NPSR (forward) TCCAATGGTGAGGTACAGTGC
NPSR (reverse) ACACCAGAAAGGCAACGATG
Beta actin (forward) TCCTGTGGCATCCATGAAAC
Beta actin (reverse) ACAGCACTGTGTTGGCATAG
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and OXT (1:500) (Ben-Barak et al., 1985) and visualized using a
DM5000B microscope (Leica). As an additional control, and to exclude
potential effects of CNO and its metabolite clozapine on general anxiety-
related behavior (Gomez et al., 2017), sham-operated DREADD-free rats
were treated with PBS or CNO (2 mg/kg, i.p.) before testing on the EPM.

Drug infusion procedure in conscious rats. For acute i.c.v. or intra-PVN
infusions, the dummy cannula was replaced by the infusion cannula
(25G, 14.7 mm i.c.v.; 27G, 14 mm intra-PVN). Sterile Ringer’s solution
was infused as vehicle control. After each infusion, the cannula was kept
in place for 10 s to allow local substance diffusion. None of the drug-
infused rats showed any signs of tremor, convulsions, or wet-dog shakes
in their homecage.

Behavioral testing. Anxiety-related behavior as well as locomotor ac-
tivity were assessed using LDB, OF, or EPM during a 5-min test session 15
min after the last intracerebral infusion.

Briefly, the LDB consisted of a lit (40 � 50 cm, 100 lux) and a dark
(40 � 30 cm, 0 lux) compartment connected via a small opening (7.5 �
7.5 cm) enabling transition between the two floors. Rats were placed into
the lit compartment, and the time spent in the light box was taken as
measurement for anxiety-related behavior. LDB behaviors were as-
sessed on video recordings using an automated video tracking system
(EthoVision X7, Noldus).

For the OF, rats were placed in the center of the OF (80 � 80 � 40 cm,
140 lux) and allowed to freely explore the arena while the time the ani-
mals spent in the center zone (40 � 40 cm), the number of center zone
entries and locomotor activity were monitored. OF behaviors were as-
sessed on video recordings using an automated video tracking system
(EthoVision X7, Noldus).

For testing on the EPM, rats were placed onto the neutral zone (10 �
10 cm) facing a closed arm of the plus-shaped maze, which was elevated
(70 cm) from the floor and consisted of two closed arms (50 � 10 cm, 10
lux) and two open arms (50 � 10 cm, 40 –50 lux). An observer blind to
treatment determined the percentage of time the rats spent on the open
arms as an indicator of anxiety-related behavior as well as the number
of closed arm entries as an indicator of locomotor activity on a video
recording.

Statistics. Statistical analyses were performed using SigmaPlot 11 (Sys-
tat). Two-tailed t test was used to evaluate FACS analysis and anxiety-
related behavior in CNO-only DREADD-free rats. For calcium imaging,
data are expressed as mean � SEM. The Student’s t test was used to
compare the size of the NPS-induced response after verification of the
normality. Differences were considered significant for p 
 0.05. OXT
content in microdialysates was analyzed using two-way ANOVA for re-
peated measures (time � treatment). In experiments designed out of
four groups, anxiety-related behavior was analyzed using two-way
ANOVA (first infusion � second infusion). In case of significant main or
interaction effects ( p 
 0.05), Tukey-corrected post hoc comparisons
were performed.

Results
NPS afferents project toward the PVN that harbors
NPSR-expressing OXT neurons
To test for NPS neurons innervating the PVN, we infused the
retrograde tracer CTB-488 bilaterally into the PVN. Five days
later, dense labeling of NPS-immunoreactive neurons was de-
tected throughout the LC, indicating prominent LC-NPS affer-
ents to the PVN (Fig. 1). As NPSR expression has been described
in the rat PVN (Xu et al., 2007), we specifically investigated NPSR
expression in PVN-OXT neurons of male Wistar rats. In the ab-
sence of a specific NPSR antibody (Slattery et al., 2015), we per-
formed FACS analysis in extracted PVN samples 3 weeks after
bilateral intra-PVN infusion of a cell type-specific rAAV expressing
Venus selectively under the control of an OXT promoter fragment
(AAV1/2 OXTpr-Venus). Hence, Venus expression was con-
fined to PVN-OXT neurons (Knobloch et al., 2012). FACS
analysis of viable cells in combination with qRT-PCR revealed
that NPSR mRNA was predominantly expressed in Venus �

neurons, whereas NPSR expression in Venus � cells was al-
most negligible (Fig. 2).

A1

A2

A3

B1

B2

B3

C

D

Figure 1. NPS neurons within the LC innervate the hypothalamic PVN, a brain region that harbors OXT neurons. A, PVN with OXT-immunoreactive neurons (magenta, A2) and infusion site of
cholera toxin subunit B conjugated to AlexaFluor-488 (CTB-488, blue; A1). B, Five days following intra-PVN infusion of the tracer, retrogradely transported CTB-488 labeled neurons immunoreactive
for NPS (magenta) in the LC (white arrows). 3 rd V, Third ventricle; 4 th V, fourth ventricle. Scale bars: A3, 100 �m; B3, 30 �m. C, Schematic drawing of intra-PVN infusion site of CTB-488. D, LC
harboring NPS-immunoreactive neurons.
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NPS activates OXT neurons within the PVN
To study whether NPS activates OXT neurons, we used ultrasen-
sitive fluorescent proteins (GCaMP6s) for imaging intracellular
Ca 2� levels, which is based on rapid deprotonation of GFP fol-
lowing conformational change of calmodulin upon Ca 2� bind-
ing (Chen et al., 2013). Three weeks following bilateral infusion
of AAV1/2OXTpr-GCaMP6s into the PVN, GCaMP6s was selec-
tively expressed under the control of the OXT promoter fragment
(Fig. 3A). Following hypothalamic slice preparation, part of
OXT neurons were identified as constitutively active (113 of 372
neurons, 30.4%), whereas the majority of neurons (259 of 372
neurons, 69.6%) displayed low variability with respect to intra-
cellular Ca 2� fluctuations and, thereby, were characterized as
constitutively silent (Fig. 3B). While a subpopulation of silent
OXT neurons (24 of 235, 10.1%) responded to NPS (2 �M for
20 s) by increased fluorescence indicative for transient rise in
intracellular Ca 2� levels (AUC increase of 58.22 � 16.20%, max
�F/F0 of 75.02 � 22.03%, duration of the response 16.63 �
6.40 s; Fig. 3C,D), no response to NPS was observed in the active
OXT neurons (2 of 135, 1,4%). In the presence of a selective
NPSR antagonist (SHA-68, 100 �M, 30 min), NPS failed to in-
duce any cellular response compared with baseline (AUC in-
crease of �3.53 � 3.25%, p 
 0.01; max �F/F0 of 16.63 � 3.55%,
p 
 0.05; Fig. 3C,D), indicating that the NPS-induced increase in
intracellular Ca 2� in OXT neurons is specifically mediated via
the NPSR.

Another indicator for a stimulated activity of OXT neurons is
increased somatodendritic OXT release (Landgraf and Neu-
mann, 2004). Thus, we monitored OXT release within the PVN
of conscious rats in response to NPS (1 or 5 nmol, i.c.v.) using
intracerebral microdialysis. Two-way ANOVA revealed an alter-

ation in local OXT release in response to NPS (F(8,79) � 5.93, p 

0.001). In detail, NPS dose-dependently evoked a significant rise
in local OXT release during the first (5 nmol, p 
 0.001 vs Veh)
and during the second and third (1 nmol, p 
 0.05 vs Veh)
30-min dialysis period, respectively, following NPS (Fig. 4).

Selective inhibition of OXTR and chemogenetic silencing of
OXT neurons within the PVN prevent NPS-induced
anxiolysis
To examine the behavioral relevance of NPS-evoked activation of
OXT neurons, two strategies were used: First, OXTR were phar-
macologically blocked by i.c.v. or intra-PVN infusion of a specific
OXTR-A (des-Gly-NH2,d(CH2)5[Tyr(Me) 2,Thr 4]OVT) before
i.c.v. or local infusion of NPS and behavioral testing on the
LDB and in the OF, respectively, to assess anxiety-related be-
havior. Next, PVN-OXT neurons were chemogenetically si-
lenced before i.c.v. infusion of NPS and behavioral testing on
the EPM.

Pharmacological blockade of OXTR by OXTR-A
Pharmacological blockade of OXTR signaling by preinfusion of a
selective OXTR-A 5 min before NPS infusion prevented NPS-
induced anxiolysis in both behavioral tests (Fig. 5). Specifically,
comparison of the four existing groups (Veh/Veh, Veh/NPS,
OXTR-A/Veh, OXTR-A/NPS) revealed that, in Veh-preinfused
rats, i.c.v. NPS increased the percentage of time the rats spent in
the lit compartment of the LDB (F(1,31) � 4.25, p � 0.049; Veh/
NPS vs Veh/Veh: p � 0.006), whereas i.c.v. OXTR antagonism
blocked this effect of NPS (OXTR-A/NPS vs Veh/NPS: p �
0.036). The OXTR-A alone did not affect anxiety-related behav-

A

B

C

Figure 2. OXT neurons within the hypothalamic PVN and SON express NPSR mRNA. FACS plots indicate that cells were sorted by (A) size via side- (SSC) and forward-scattered light (FSC) and (B)
fluorescence intensity in living cells negative for propidium iodide (PI). C, qRT-PCR of reversely transcribed RNA isolated from sorted viable cells demonstrated prominent NPSR mRNA expression in
Venus � neurons, whereas NPSR mRNA expression in Venus � cells was almost negligible. Data are mean � SEM. *p 
 0.05.
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ior (p � 0.48, OXTR-A/Veh vs Veh/Veh).
Neither NPS nor OXTR-A, alone or in
combination, influenced the locomotor
activity indicated by traveled distance
(F(1,31) � 0.50, p � 0.49; Fig. 5). Similarly,
in the OF, i.c.v. NPS produced a robust
anxiolytic effect as animals spent more
time in the center zone (F(1,33) � 4.46, p �
0.043; Veh/NPS vs Veh/Veh: p � 0.002).
In contrast, in rats preinfused with
OXTR-A, NPS failed to induce anxiolysis
(OXTR-A/NPS vs Veh/NPS: p � 0.003).
None of the treatments changed locomo-
tor activity in the OF, as reflected by the
traveled distance (F(1,33) � 0.57, p � 0.46;
Fig. 5).

To localize the effects of OXTR-A
pretreatment and NPS within the PVN,
local infusions were performed. In Veh-
pretreated rats, local NPS exerted a robust
anxiolytic effect, which was comparable
with that seen after i.c.v. infusion. Prein-
fusion of the OXTR-A bilaterally into the
PVN prevented the anxiolytic effect of
NPS infused 5 min later (Fig. 5). Specifi-
cally, in the LDB, NPS increased the time
the rats spent in the lit compartment
(main effect of second infusion: F(1,41) �
6.65, p � 0.014; Veh/NPS vs Veh/Veh: p �
0.003), whereas preinfusion of OXTR-A
prevented this effect ( p � 0.49, OXTR-
A/Veh vs OXTR-A/NPS). Neither local
OXTR-A nor NPS, alone or in combina-
tion, changed the locomotor activity indi-
cated by the distance traveled in the LDB
(F(1,30) � 0.28, p � 0.60; Fig. 5). The result
of local blockade of OXTR preventing the
anxiolytic NPS effects within the PVN
was recapitulated in the OF: in Veh-
pretreated rats, NPS increased the time
spent in the center of the OF (main effect of
the second infusion: F(1,35) � 4.17, p �
0.049; Veh/NPS vs Veh/Veh: p � 0.033),
whereas preinfusion of OXTR-A pre-
vented this anxiolytic effect (OXTR-A/
Veh vs OXTR-A/NPS: p � 0.49). In the
OF, NPS increased the traveled distance
indicative of increased locomotor activity
(main effect of the second infusion: F(1,35) �
6.82, p � 0.014; Veh/NPS vs Veh/Veh: p �
0.049; Fig. 5).

Figure 3. NPS effects on PVN-OXT neurons in hypothalamic slice preparation (A–D). A, Schematic drawing of the PVN OXTpr-
GCaMP6s virus infusion and subsequent [Ca 2�]i imaging of OXT neurons. B, Basal activity of two distinct subpopulations of OXT
neurons (dark gray represents active; light gray represents silent) illustrated by typical �F/F0 traces. Pie charts represent the
proportion of active (up) and silent (down) OXT neurons: n slices (ns) � 11, n OXT neurons (nn) � 237. C, Pie charts of the
proportion of responsive OXT neurons to NPS application alone (2 �M, 20 s; ns � 11, nn � 24 of 237; green) or in the presence of
NPSR antagonist (SHA-68 100 �M, �15 min; ns � 6, nn � 3 of 135; light blue) and typical �F/F0 traces. Pseudo-color video
extract of identified OXT neurons through GCaMP6s imaging [Ca 2�]i in control conditions (gray), in the presence of NPS (green) or
NPS � SHA-68 (light blue) (stacks of 50 images/10 s of recording). Scale bar, 20 �m. D, Relative AUC increase and maximal �F/F0

4

of OXT neurons in the presence of NPS (ns � 11; green) or
NPS � SHA-68 (ns � 6, light blue). Only response duration of
OXT neurons in the presence of NPS (ns � 11; green) are rep-
resented here. White circles represent the average value per
slice. *p 
 0.05 (Student’s t test). **p 
 0.01 (Student’s t
test).
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Chemogenetic silencing of PVN-OXT neurons
Following intra-PVN infusion of AAV1/2 OXTpr-hM4Di:
mCherry, an inhibitory DREADD was expressed under the
control of the OXT promoter fragment. Quantitative analysis
of the PVN showed that 93.0 � 1.4% of mCherry-
immunopositive cells (n � 278) expressed OXT, and 94.2 �
1.2% of OXT-immunoreactive neurons (n � 274) expressed
hM4Di:mCherry, revealing an efficient and specific virus expres-
sion. After intraperitoneal CNO (Fig. 6), i.c.v. NPS failed to in-
duce anxiolysis suggesting DREADD-mediated inhibition of
PVN-OXT neurons and their importance for NPS-induced anxi-
olysis. On the EPM, two-way ANOVA revealed a main effect of
the first (F(1,31) � 6.63, p � 0.016, CNO vs PBS) and second
infusion (F(1,31) � 7.65, p � 0.010, NPS vs Veh). In detail, NPS
increased the percentage of time spent on the open arms of the
EPM in PBS-pretreated rats (PBS/NPS vs PBS/Veh: p � 0.008)

indicative of an anxiolytic effect, whereas CNO pretreatment pre-
vented the effect of NPS (CNO/NPS vs PBS/NPS: p � 0.014;
CNO/Veh vs CNO/NPS: p � 0.25). Moreover, NPS increased the
percentage of open arm entries (main effect of the first infusion:
F(1,35) � 11.60, p � 0.002; second infusion: F(1,31) � 10.42, p �
0.003; PBS/NPS vs PBS/Veh: p � 0.048), an effect that was also
blocked by chemogenetic silencing (CNO/NPS vs PBS/NPS: p �
0.042; CNO/Veh vs CNO/NPS: p � 0.019). CNO alone resulted
in a partial increase in anxiety-related behavior as seen by a re-
duction in the percentage of open arm entries only (p 
 0.05 vs
all). None of the drugs altered locomotor activity expressed by the
number of closed arm entries (F(1,31) � 1.69, p � 0.21). Control
intraperitoneal application of CNO alone to sham-operated an-
imals revealed no behavioral effects during 5-min testing on the
EPM, as the percentage of time spent on the open arms (t(12) �
0.33, p � 0.75), the percentage of open arm entries (t(12) � �0.71,

Figure 4. NPS effects on intracerebral OXT release in the PVN of conscious male rats. OXT content in 30-min microdialysates sampled within the PVN under basal conditions (b1 and b2),
and after i.c.v. infusion of either Veh or NPS (1 or 5 nmol), as well as a representative microphotograph of a Nissl-stained coronal section demonstrating the placement of the microdialysis
probe within the PVN. Data are expressed as percentage of baseline (mean of basal 1 and 2; � 100%; dotted line) � SEM; n � 5 or 6. **p 
 0.01 versus all. *p 
 0.05 versus respective
Veh.

Figure 5. Intracerebroventricular and intra-PVN preinfusion with an OXTR antagonist blocked NPS-induced anxiolysis. Male rats were infused with a selective OXTR antagonist (OXTR-A, 0.75 �g
i.c.v.; 0.15 �g intra-PVN) before infusion with either NPS (. . .) (1 nmol i.c.v.; 0.2 nmol intra-PVN) or Veh. The percentage of time spent in the lit compartment of the LDB (upper row) and the time
spent in the center zone of the OF (lower row) indicate anxiety-related behavior. Traveled distance indicates locomotor activity in the lit and dark compartment, and center and outer OF zones of the
LDB and OF, respectively. Data are mean � SEM; group sizes: n � 8 –13. *p 
 0.05 versus all or as indicated. **p 
 0.01 versus all or as indicated.
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p � 0.49), and the number of closed arm entries (t(12) � 0.31, p �
0.76) did not differ in comparison with PBS-treated rats.

Discussion
The present study describes a novel intrahypothalamic mecha-
nism with NPS activating a subpopulation of OXT neurons
within the PVN that mediate the anxiolytic effect of NPS. This find-
ing comes at a time of growing interest in brain neuropeptides as
potential therapeutic targets to treat psychopathologies, such as anx-
iety disorders (Pape et al., 2010; Neumann and Landgraf, 2012; Neu-
mann and Slattery, 2016); and both OXT and NPS have been
established as potent anxiolytic neuropeptides of the brain (Xu et al.,
2004; Neumann, 2008; Pape et al., 2010; Neumann and Landgraf,
2012; Slattery et al., 2015; van den Burg et al., 2015; Neumann and

Slattery, 2016). Herein, our findings demonstrate pericoerulear NPS
fibers innervating the PVN and NPSR expression in hypothalamic
OXT neurons. Moreover, NPS activated a subpopulation of PVN-
OXT neurons as reflected by transient Ca2� influx and increased the
somatodendritic release of OXT in the PVN under otherwise basal
conditions. Both pharmacological blockade of local OXTR as well as
chemogenetic silencing of OXT neurons within the PVN blocked the
NPS-induced anxiolysis demonstrating the essential involvement of
OXT neurons within the PVN.

Whereas NPS projections in the rat brain have not been stud-
ied so far, NPS-immunopositive fibers originating within the LC
have been detected in various mouse brain regions, including the
PVN as shown in C57BL/6 mice (Clark et al., 2011). Here, we can
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Figure 6. Chemogenetic silencing of PVN-OXT neurons prevented the anxiolytic effect of a subsequent NPS infusion. A, Schematic drawing of rAAV construct used to transfect PVN neurons.
B, Virally introduced expression of an inhibitory DREADD (hM4Di:mCherry) in OXT neurons within the PVN. Scale bar, 100 �m. 3v, Third ventricle. To evaluate the effect of chemogenetic silencing
of PVN-OXT neurons on NPS-induced anxiolysis (C–E), rats were pretreated with either PBS or CNO (2 mg/kg; i.p.), followed by i.c.v. infusion of either Ringer’s solution (Veh, 5 �l) or NPS (1 nmol);
group sizes: n � 8 or 9, except CNO/Veh: n � 6. To analyze potential effects of CNO or its metabolites on anxiety-related behavior, sham-operated DREADD-free rats were injected with either PBS
or CNO (2 mg/kg; i.p.); group sizes: n � 7. C, F, Percentage of time spent on the open arms of the EPM. D, G, Percentage of open arm entries. E, H, Number of closed arm entries reflects locomotor
activity during the 5-min test period. Data are mean � SEM. *p 
 0.05 versus all or as indicated. **p 
 0.01 versus all or as indicated. #p 
 0.05 versus all.
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confirm the existence of NPS neurons in the LC projecting to-
ward the PVN also in the rat using a retrograde tracer. Thus, in
both rats and mice, the PVN has been identified as a target site of
NPS neurons in the brainstem.

Previous studies using in situ hybridization revealed abundant
NPSR mRNA expression in the PVN of rats (Xu et al., 2007). In
our study, we applied a sensitive and highly specific technique
(FACS analysis of Venus-labeled PVN and SON OXT neurons)
and demonstrated prominent NPSR expression in OXT neurons,
whereas NPSR mRNA in Venus� cells, likely to be specifically
vasopressin or corticotrophin-releasing hormone (CRH) neu-
rons, was almost negligible. Earlier experiments confirmed
selective expression of Venus in OXT neurons with �97% colo-
calization of OXT supporting the significance of our results in
terms of cell-type-specific Venus labeling (Knobloch et al.,
2012). In this context, it is worth mentioning that our intention
to localize NPSR protein in OXT neurons of the PVN with NPSR
antibodies used before (Leonard and Ring, 2011) failed, as sub-
sequent analysis using NPSR knock-out mouse brains revealed a
severe lack of specificity of these antibodies (Slattery et al., 2015).

Based on the finding of NPSR mRNA expression in OXT
neurons of the PVN, we analyzed the neurophysiological ef-
fects of NPS on the activity of OXT neurons using ultrasensi-
tive fluorescent proteins. In hypothalamic slice preparations, a
subpopulation of constitutively silent OXT neurons express-
ing ultrasensitive fluorescent Ca 2� imaging marker GCaMP6s
responded to synthetic NPS with transient Ca 2� influx, which
reflects neuronal activation. The recorded Ca 2� response was
heterogeneous, but massive, with a slow rise time and relative
long-lasting responses of several seconds. This observation is
compatible with a previous study in hippocampal mouse neurons
(Erdmann et al., 2015). The NPS effects on intracellular Ca 2�

also studied in NPSR1-transfected HEK293T and CHO cells are
most likely mediated by NPSR-induced Gq signaling (Reinscheid
et al., 2005; Liao et al., 2016; Clark et al., 2017). In vivo, it has
recently been demonstrated that NPS promotes anxiolysis in a
phospholipase C-dependent manner and increases intracellular
Ca 2� levels characterized by increased phosphorylation and syn-
thesis of Ca 2�/calmodulin-dependent kinase II within the rat
medial amygdala (Grund and Neumann, 2017).

It is important to note that repeated NPS application failed to
induce a repeated Ca 2� response in the same OXT neurons, as
already reported by previous studies (Jüngling et al., 2008; Meis et
al., 2008). While the mechanism involved is yet to be determined,
one can hypothesize desensitization of NPSR. However, the spe-
cific involvement of NPSR on NPS-induced activation of OXT
neurons was successfully demonstrated, because NPS failed to
increase intracellular Ca 2� levels in the presence of the selective
NPSR antagonist SHA-68 (Okamura et al., 2008; Ruzza et al.,
2010).

The presence of extracellular Ca 2� and the rise in intracellular
Ca 2� were found to be essential for both OXT secretion from
neurohypophysial terminals (Fisher and Bourque, 1996) as well
as for somatodendritic release in the SON and PVN (Neumann et
al., 1993; Lambert et al., 1994; Ludwig et al., 2002). To test
whether NPS also affects the secretory activity of OXT neurons
within the PVN, we used microdialysis in combination with a
highly sensitive radioimmunoassay. Indeed, we could demon-
strate that NPS dose-dependently stimulated OXT release within
the PVN of conscious rats under otherwise basal conditions. Cen-
tral NPS infusion at 1 nmol induced a measurable and long-
lasting increase in OXT release from neuronal structures within
the PVN over 60 min as reflected by an increased OXT content

in the two consecutive post-treatment 30-min microdialysates.
In contrast, 5 nmol of NPS induced a rather rapid increase in
OXT release, which declined to baseline during the second sam-
pling period after treatment. However, the underlying mecha-
nisms of the dose-dependent effects of NPS on the dynamics of
OXT release and the differential contribution of various Ca 2�

sources are currently unknown.
The stimulatory effects of NPS on the activity of OXT neurons

within the PVN, which are NPSR-mediated, highlight an intra-
hypothalamic mechanism at the cellular level. Moreover, we can
show that NPS exerts a behavioral effect directly within the PVN,
and this anxiolytic effect requires the activation of local OXT
neurons. Based on pharmacological and chemogenetic inhibition
of the OXT system, our results indicate an important role for
OXT to mediate the anxiolytic effect of NPS in the hypothalamic
PVN. Specifically, preinfusion of a selective OXTR-A (Manning
et al., 2012) into the cerebral ventricular system was able to pre-
vent the NPS-induced reduction in anxiety levels as seen in two
separate and well-established tests for anxiety-related behavior
(i.e., the LDB and the OF). Infusion of the OXTR-A alone did not
alter anxiety levels, which confirms earlier results in male rats
under basal conditions (Waldherr and Neumann, 2007). Impor-
tantly, also local preinfusion of OXTR-A bilaterally into the PVN
reduced the robust NPS-induced anxiolysis seen in rats prein-
fused with vehicle, although to a lower degree. Thus, we hypoth-
esize that NPS infused into the PVN activates local OXT neurons
resulting in local somatodendritic OXT release. Both endogenous
as well synthetic OXT have been repeatedly shown to exert an
anxiolytic effect within the PVN (Neumann et al., 2000; Blume et
al., 2008; Jurek et al., 2012; van den Burg et al., 2015). Possible
underlying mechanisms of local OXT-induced anxiolysis are
likely to include inhibitory effects on local CRF neurons (Jurek et
al., 2015). As OXT neurons are glutamatergic in nature, their
activation might also increase synaptic glutamate release. This
will comprise an autoexcitatory network structure synchronizing
OXT release throughout the hypothalamus (Dabrowska et al.,
2011; for review, see Johnson and Young, 2017). Moreover, local
NPS may activate those OXT neurons in the PVN, which project
to other brain regions, such as the amygdala (Knobloch et al.,
2012), where OXT was also found to reduce anxiety- and fear-
related behavior (Bale et al., 2001; Viviani et al., 2011).

To specifically prove for the involvement of PVN-OXT
neurons in the behavioral effects of NPS, we chemogenetically
inhibited OXT neurons of the PVN using a Gi-coupled DREADD
selectively expressed under the control of the OXT promoter
fragment. At the cellular level, chemogenetic silencing using
AAV1/2 OXTpr-hM4Di:mCherry has been shown to result in re-
duced mean frequency of spikes induced by application of cur-
rents, increased inward currents, and decreased input resistance
of OXT neurons (Eliava et al., 2016). Thus, chemogenetically
silenced OXT neurons can no longer be activated by NPS. In our
experiment, DREADD-evoked silencing of OXT neurons reliably
prevented the anxiolytic effect of a subsequent central NPS infu-
sion, as seen on the EPM, which provides final evidence for the
essential role of stimulated PVN-OXT neurons in mediating this
behavioral effect of NPS. Importantly, injection of CNO to rats
expressing DREADD in OXT neurons slightly increased anxiety-
related behavior, as seen from a reduced percentage of open arm
entries on the EPM. Thus, chemogenetic silencing of OXT neu-
rons might result in a general neuronal inhibition, including
abolished intracerebral OXT release under basal conditions
within the PVN or in other relevant limbic brain regions, impor-
tant for the individual level of anxiety. Also, dysregulation of the
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CRH system after silencing of OXT neurons, especially during
exposure to an emotional stressor, such as the EPM, cannot be
ruled out, the more as OXT was found to attenuate the stress-
induced expression of CRH in a CREB-dependent manner (Jurek
et al., 2015).

Recently, it has been shown that the CNO metabolite cloza-
pine, an atypical antipsychotic, potently activates DREADD (Go-
mez et al., 2017). To exclude unspecific behavioral effects of CNO
or its metabolite clozapine demonstrated at doses �5 mg/kg
(i.p.) (MacLaren et al., 2016), we have applied CNO at a dose
of 2 mg/kg (i.e., at subthreshold level) to specifically activate
DREADD expressed by OXT neurons. Moreover, control appli-
cation of CNO alone in DREADD-free Wistar rats did not alter
anxiety-related behavior and locomotor activity on the EPM.
Therefore, we are confident that stimulation of an inhibitory
DREADD resulted in selective inhibition of OXT neurons, par-
ticularly because i.c.v. and local OXTR antagonism before
NPS infusion leads to comparable effects on anxiety-related
behavior.

Based on our results, we suggest the following scenario under
physiological conditions: In response to a challenging and stress-
ful situation, pericoerulear NPS neurons, which are CRH-
sensitive (Jüngling et al., 2012), become activated resulting in
local NPS release as shown in the basolateral amygdala during
forced swimming (Ebner et al., 2011). However, NPS neurons
also project to the PVN as described in mice (Clark et al., 2011),
and in rats using a retrograde tracer infused into the PVN (Fig. 1).
Thus, NPS released within the PVN from NPS terminals activates
OXT neurons, as indicated by increased intracellular Ca 2� levels,
which results in local OXT release or stimulation of centrally
projecting OXT neurons as described above. Finally, the rise in
OXT availability in the regional extracellular fluid results in the
modulation of an appropriate anxiety response of an individual
to cope with the environmental challenge.

In conclusion, our findings demonstrate a novel intrahypo-
thalamic mechanism involving NPSR-expressing OXT neurons
of the PVN, which are activated by NPS and respond with tran-
sient increase in intracellular Ca 2� and local somatodendritic
OXT release. The stimulation of local OXT neurons is essential
for NPS-induced anxiolysis, as this effect was blocked by specific
pharmacological and chemogenetic inhibition of the OXT sys-
tem. These findings provide important evidence for interactions
of NPS with another neuropeptidergic system but obviously war-
rant further research into how these circuits orchestrate specific
physiological effects resulting in distinct behavioral outputs (e.g.,
the regulation of stress or anxiety-related behavior).
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